skip to main content


Search for: All records

Creators/Authors contains: "Tanaka, Masayuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This paper presents a morphology classification catalog of spiral and ring features of 59854 magnitude-limited galaxies (r < 17.8 mag, and additional 628005 subsamples down to r = 20 mag) at z = 0.01–0.3 based on the Third Public Data Release of the Hyper Suprime-Cam Subaru Strategic Program. We employ two deep-learning classifiers to determine the spiral and ring structures separately based on GALAXY CRUISE Data Release 1, which is dedicated to Hyper Suprime-Cam data. The number of spiral and ring galaxies contain 31864 and 8808 sources, respectively, which constitute 53% and 15% of the sample. A notable result of this study is the construction of a large sample of ring galaxies utilizing high-quality imaging data delivered by the Subaru Hyper Suprime-Cam. However, the accurate identification of ring galaxies remains difficult at a limited seeing resolution. Additionally, we confirm that most spiral galaxies are located on the star-forming main sequence, whereas ring galaxies preferentially reside in the green valley at stellar masses of 1010.5–1011 solar mass. Furthermore, decreasing fractions of spiral and ring galaxies are observed toward the centers of the galaxy clusters. The obtained morphology catalog is publicly available on the GALAXY CRUISE website.

     
    more » « less
  2. Abstract

    We analyze the photometric data in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) over ∼1200 deg2 to uncover new halo substructures beyond the distance, D⊙ ∼ 30 kpc, from the Sun. For this purpose, we develop an isochrone filter for an old, metal-poor stellar system to extract the faint main-sequence stars at a range of distances. With this method, we detect not only the previously discovered substructures such as the Orphan Stream, but also a new overdensity toward Boötes at about D⊙ ∼ 60 kpc and a new stream-like feature toward Pisces at around D⊙ ∼ 60 kpc. It has been suggested that a small-scale overdensity exists in this direction of Pisces (the so-called Pisces Overdensity), but our results show that the overdensity is widely spread with a tidally elongated feature. Combining our results with the ongoing Hyper Suprime-Cam narrow-band survey and the near-future spectroscopic survey with Prime Focus Spectrograph (PFS) will allow us to place strong constraints on the origin of these halo substructures.

     
    more » « less
  3. Abstract

    We present the first results from GALAXY CRUISE, a community (or citizen) science project based on data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The current paradigm of galaxy evolution suggests that galaxies grow hierarchically via mergers, but our observational understanding of the role of mergers is still limited. The data from HSC-SSP are ideally suited to improve our understanding with improved identifications of interacting galaxies thanks to the superb depth and image quality of HSC-SSP. We launched a community science project, GALAXY CRUISE, in 2019 and have collected over two million independent classifications of 20686 galaxies at z < 0.2. We first characterize the accuracy of the participants’ classifications and demonstrate that it surpasses previous studies based on shallower imaging data. We then investigate various aspects of interacting galaxies in detail. We show that there is a clear sign of enhanced activities of super-massive black holes and star formation in interacting galaxies compared to those in isolated galaxies. The enhancement seems particularly strong for galaxies undergoing violent mergers. We also show that the mass growth rate inferred from our results is roughly consistent with the observed evolution of the stellar mass function. The second season of GALAXY CRUISE is currently underway and we conclude with future prospects. We make the morphological classification catalog used in this paper publicly available at the GALAXY CRUISE website, which will be particularly useful for machine-learning applications.

     
    more » « less
  4. ABSTRACT

    This paper reports our discovery of the most massive supercluster, termed the King Ghidorah Supercluster (KGSc), at z = 0.50–0.64 in the Third Public Data Release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP PDR3) over 690 deg2, as well as an initial result for a galaxy and dark matter mapping. The primary structure of the KGSc comprises triple broad weak-lensing (WL) peaks over 70 comoving Mpc. Such extensive WL detection at z > 0.5 can only currently be achieved using the wide-field high-quality images produced by the HSC-SSP. The structure is also contiguous with multiple large-scale structures across a ∼400 comoving Mpc scale. The entire field has a notable overdensity (δ = 14.7 ± 4.5) of red-sequence clusters. Additionally, large-scale underdensities can be found in the foreground along the line of sight. We confirmed the overdensities in stellar mass and dark matter distributions to be tightly coupled and estimated the total mass of the main structure to be 1 × 1016 solar masses, according to the mock data analyses based on large-volume cosmological simulations. Further, upcoming wide-field multi-object spectrographs such as the Subaru Prime Focus Spectrograph may aid in providing additional insights into distant superclusters beyond the 100 Mpc scale.

     
    more » « less
  5. Abstract

    This paper presents a thousand passive spiral galaxy samples at z = 0.01–0.3 based on a combined analysis of the Third Public Data Release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP PDR3) and the GALEX–SDSS–WISE Legacy Catalog (GSWLC-2). Among 54871 gri galaxy cutouts taken from the HSC-SSP PDR3 over 1072 deg2, we conducted a search with deep-learning morphological classification for candidates of passive spirals below the star-forming main sequence derived by ultraviolet to mid-infrared spectral energy distribution fitting in the GSWLC-2. We then classified the candidates into 1100 passive spirals and 1141 secondary samples based on visual inspections. Most of the latter cases are considered to be passive ringed S0 or pseudo-ringed galaxies. The remaining secondary samples have ambiguous morphologies, including two peculiar objects with diamond-shaped stellar wings. The selected passive spirals have a similar distribution to the general quiescent galaxies on the EWHδ–Dn4000 diagram and concentration indices. Moreover, we detected an enhanced passive fraction of spiral galaxies in X-ray clusters. Passive spirals in galaxy clusters are preferentially located in the midterm or late infall phase on the phase–space diagram, supporting the ram pressure scenario, which has been widely advocated in previous studies. The source catalog and gri-composite images are available on the HSC-SSP PDR3 website 〈https://hsc.mtk.nao.ac.jp/ssp/data-release/〉. Future updates, including integration with a citizen science project dedicated to the HSC data, will achieve more effective and comprehensive classifications.

     
    more » « less
  6. Abstract

    We present the Swimmy (Subaru WIde-field Machine-learning anoMalY) survey program, a deep-learning-based search for unique sources using multicolored (grizy) imaging data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). This program aims to detect unexpected, novel, and rare populations and phenomena, by utilizing the deep imaging data acquired from the wide-field coverage of the HSC-SSP. This article, as the first paper in the Swimmy series, describes an anomaly detection technique to select unique populations as “outliers” from the data-set. The model was tested with known extreme emission-line galaxies (XELGs) and quasars, which consequently confirmed that the proposed method successfully selected $\sim\!\! 60\%$–$70\%$ of the quasars and $60\%$ of the XELGs without labeled training data. In reference to the spectral information of local galaxies at z = 0.05–0.2 obtained from the Sloan Digital Sky Survey, we investigated the physical properties of the selected anomalies and compared them based on the significance of their outlier values. The results revealed that XELGs constitute notable fractions of the most anomalous galaxies, and certain galaxies manifest unique morphological features. In summary, deep anomaly detection is an effective tool that can search rare objects, and, ultimately, unknown unknowns with large data-sets. Further development of the proposed model and selection process can promote the practical applications required to achieve specific scientific goals.

     
    more » « less
  7. Abstract

    We present our determination of the baryon budget for an X-ray-selected XXL sample of 136 galaxy groups and clusters spanning nearly two orders of magnitude in mass (M500 ∼ 1013–1015 M⊙) and the redshift range 0 ≲ z ≲ 1. Our joint analysis is based on the combination of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) weak-lensing mass measurements, XXL X-ray gas mass measurements, and HSC and Sloan Digital Sky Survey multiband photometry. We carry out a Bayesian analysis of multivariate mass-scaling relations of gas mass, galaxy stellar mass, stellar mass of brightest cluster galaxies (BCGs), and soft-band X-ray luminosity, by taking into account the intrinsic covariance between cluster properties, selection effect, weak-lensing mass calibration, and observational error covariance matrix. The mass-dependent slope of the gas mass–total mass (M500) relation is found to be $1.29_{-0.10}^{+0.16}$, which is steeper than the self-similar prediction of unity, whereas the slope of the stellar mass–total mass relation is shallower than unity; $0.85_{-0.09}^{+0.12}$. The BCG stellar mass weakly depends on cluster mass with a slope of $0.49_{-0.10}^{+0.11}$. The baryon, gas mass, and stellar mass fractions as a function of M500 agree with the results from numerical simulations and previous observations. We successfully constrain the full intrinsic covariance of the baryonic contents. The BCG stellar mass shows the larger intrinsic scatter at a given halo total mass, followed in order by stellar mass and gas mass. We find a significant positive intrinsic correlation coefficient between total (and satellite) stellar mass and BCG stellar mass and no evidence for intrinsic correlation between gas mass and stellar mass. All the baryonic components show no redshift evolution.

     
    more » « less
  8. null (Ed.)
  9. null (Ed.)
    Abstract We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $\Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and $2.4\:$arcmin$^{-2}$ from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, $\xi _\pm$, for our cosmological analysis, given that we find no evidence of significant B-mode shear. The TPCFs are detected at high significance for all 10 combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7^{\prime }<\theta <56^{\prime }$ for $\xi _+$ and $28^{\prime }<\theta <178^{\prime }$ for $\xi _-$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $\Lambda$ cold dark matter model, we find $S\,_8 \equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.804_{-0.029}^{+0.032}$, and $\Omega _{\rm m}=0.346_{-0.100}^{+0.052}$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints. 
    more » « less