Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the discovery of NGC253-SNFC-dw1, a new satellite galaxy in the remote stellar halo of the Sculptor Group spiral, NGC 253. The system was revealed using deep, resolved star photometry obtained as part of the Subaru Near-Field Cosmology Survey that uses the Hyper Suprime-Cam on the Subaru Telescope. Although rather luminous (MV= −11.7 ± 0.2) and massive (M*∼ 1.25 × 107M⊙), the system is one of the most diffuse satellites yet known, with a half-light radius ofRh= 3.37 ± 0.36 kpc and an average surface brightness of ∼30.1 mag arcmin−2within theRh. The color–magnitude diagram shows a dominant, old (∼10 Gyr), and metal-poor ([M/H] = −1.5 ± 0.1 dex) stellar population, as well as several candidate thermally pulsing asymptotic giant branch stars. The distribution of red giant branch stars is asymmetrical and displays two elongated tidal extensions pointing toward NGC 253, suggestive of a highly disrupted system being observed at apocenter. NGC253-SNFC-dw1 has a size comparable to that of the puzzling Local Group dwarfs Andromeda XIX and Antlia 2 but is 2 magnitudes brighter. While unambiguous evidence of tidal disruption in these systems has not yet been demonstrated, the morphology of NGC253-SNFC-dw1 clearly shows that this is a natural path to produce such diffuse and extended galaxies. The surprising discovery of this system in a previously well-searched region of the sky emphasizes the importance of surface-brightness limiting depth in satellite searches.more » « less
-
null (Ed.)Abstract We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $$\Delta z =0.3$$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and $$2.4\:$$arcmin$$^{-2}$$ from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, $$\xi _\pm$$, for our cosmological analysis, given that we find no evidence of significant B-mode shear. The TPCFs are detected at high significance for all 10 combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $$7^{\prime }<\theta <56^{\prime }$$ for $$\xi _+$$ and $$28^{\prime }<\theta <178^{\prime }$$ for $$\xi _-$$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $$\Lambda$$ cold dark matter model, we find $$S\,_8 \equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.804_{-0.029}^{+0.032}$$, and $$\Omega _{\rm m}=0.346_{-0.100}^{+0.052}$$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints.more » « less
An official website of the United States government
